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our problem ...
we want to give a logical (proof-theoretical) model of
ACID-Transactions.

◮ a “single” (possibly non elementary) logical operation on (DBMS)
data is called a transaction;

◮ ACID (Atomicity, Consistency, Isolation, Durability) is a set of
properties that guarantee that database transactions are processed
reliably;

◮ Atomicity refers to the ability of the DBMS to guarantee that either
all of the tasks of a transaction are performed or none of them are.

◮ Consistency ensures that the database remains in a consistent state
before the start of the transaction and after the transaction is over
(whether successful or not).

◮ Isolation refers to the requirement that other operations cannot
access or see the data in an intermediate state during a transaction.

◮ Durability (non-reversibility) refers to the guarantee that once the
user has been notified of success, the transaction will persist, and
not be undone.



our approach ...

our general programme is to set a correspondence:

transactional concepts ⇔ proof-theoretical concepts

Computation Proof theory

paradigm functional logic

state proof: proof:
with cuts cut-free

without proper axioms with proper axioms
transformation proof reduction: proof construction:

i.e. cut-elimination i.e. proper axioms elimination
final state cut-free proof proof without proper axioms

type formula formula/sequent



our technology

◮ the construction of MALL Proof Nets (Modules, indeed) by a
set of concurrent agents (links);

◮ this construction (expansion) must be performed in an
incremental and local (possibly efficient) way;

◮ agents are elementary components (positive or negative links)
whose role is to guarantee that the overall structure they build
is correct (still a proof-module);

◮ checking correctness of a PN is a task that may require to
explore (travel and freeze) a large portion of the structure,
resulting in conflicts between agents and forcing them to take
turn (scheduling).

◮ we try to identify “precisely“ (a lower boubd) the portion of
structure must be checked (and locked) by a candidate (to
the expansion) agent in such a way to reduce possible
conflicts with other concurrent candidates.



our model of concurrent transactions

◮ positive agents behave like schedulers in transactional
models: they role is to ensure that transactions they enact
could be serialised, i.e., isolated and executed atomically:

◮ the usual way the positive agents achieve this task is by
identifying as precisely as possible (using locks) the potential
conflicts between transactions and by actually serializing only
the conflicting ones;

◮ this is known as the isolation property of acid transactions

◮ negative agents may force transactions to be performed (or
aborted) simultaneously.



links

◮ assume an infinite set of places (loci, addresses) L;

◮ a link consists in two disjoint sets of loci, top and bottom,
together with a polarity +/−:

◮ a positive link must have at least one bottom locus;
◮ a negative link must have exactly one bottom locus;

negative positive

Top places

bottom places

- +

if the set of top places is not empty, then a link is said
transitional.



weighted negative link

v1

v =
∑m

i=1 vi

lm>nl1

vm

· · · vi is a monomial in Bool(p1, ..., pn)

∀i , 1 ≤ i ≤ m,

p1, ..., pn p1, ..., pn, with n ≥ 0, eigen weights, i.e., Boolean variables

@ @ a special place with weight v

it corresponds to a generalized (via distr.) negative link of MALL

&J∈J (Oj∈JP
+
j )

with the following conditions:

1. if n = 0 then v1 = ... = vm = v = 1;

2. for each evaluation ϕ(p1, ..., pn) there exists, at least, an active top
place li (i.e., ϕ(vi ) 6= 0);

3. for each pi , 1 ≤ i ≤ n,
∑

j vj (ǫpi
) must be a monomial, where:

◮ vj(ǫpi
) denotes a weight vj containing an occurrence ǫpi

;
◮ ǫpi

denotes an occurrence of pi or p̄i



weighted positive link

l1 lm

l1 ln
⋆ · · ·

· · ·

π with weight v

◮ all palaces (bottom, top and the special ⋆) have the same
non-zero weight v (a monomial of the Boolean algebra over
the set of eigen weights.

◮ it corresponds to a generalized (via distr.) positive link of
MALL:

⊕I∈N (⊗i∈IN
−
i )



MALL (focussing) Transactional Structure (TS)
A TS is a set R of links satisfying:

1. the sets of top and bottom places of a link are disjoint;

2. the sets of top (resp., bottom) places of any two links with opposite
polarities are disjoint;

3. two adjacent links (with a common place) have opposite polarities
and same weight, except in the case of a contraction:

... ...

v

p1, ..., pn

⋆ ⋆... ...

...

v ′ v ′′

vi = v ′ + v ′′

v ′.v ′′ = 0

contraction

@vi

4. if the weight v of a (positive) link y+ depends on an eigen weight p

(i.e., p or p̄ occurs in v) of a negative link x−, then v ≤
∑

i vi ,
where vi is the weight of any top places of x− depending on p too;

5. a bottom border place (it is not top place of any link) has weight 1.



Remark on the monomiality condition (4) of TS

This is a MALL Proof Structure (with weights):

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

cut

q

q

&q

q&p

π



Remark on the monomiality condition (4) of TS

while this is not a proof structure:

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

cut

&q

π

p̄

p

&p q

it violates the monomiality condition:
if a node L depends on p then w(L) ≤ w(&p)

(but, there exists a node whose weight is p 6≤ q !)



Example (1): a TS

1 1
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q̄q̄

q
pq̄

p̄q

⋆ ⋆

⋆

pq

p̄q̄

{p} {q}

p

p̄

⋆

⋆

⋆

@@@

⋆

⋆

⋆⋆

@

⋆

denotes a non-border place



Transactional Nets (1/3): slice and switching

We are interested in correct TS (i.e. TN).

◮ given a TS R and fixed a valuation ϕ, a slice ϕ(R) is the graph
obtained from π by keeping only those links whose weight is 1;

◮ a switching S for R is the slice ϕ(R) in which we add jumps:

...

...p...

...

...

⋆

@

jump

vy

x

from a positive y we jump to a negative x

if v(y) depends on an eigen weight p of x



Transactional Nets (2/3): trip and singularity

◮ a trip α in a switching S for R is a non-empty binary relation on |S |
(the set of link of S) which is finite, connected and s.t. any x ∈ |S |
has at most one successor (resp., one predecessor), if it exists. Then:

◮ a singularity for a trip

x x

is a singularity for α iff

exists x upwards

a negative middle point x of a trip α

α enters x downwards and



Transactional Nets (3/3): correctness

CC01 : a TS is correct, it is a Transactional Net, iff any proper
loop (with at least two links) in any switching contains at
least a singularity.

◮ A TN sequetialises into a Focussing Sequent Proof.



Example (2): a TS that is not a TN

The TS in the Example (1) is not correct: there exists a loop in the
switched slice S (with ϕ(p) = ϕ(q) = 1) that is singularity free.

1 1

11

q
⋆

pq

{p} {q}

p
⋆

@@@

⋆

⋆⋆

@



Properties of TN: top switching

◮ a +link y is called top +link when none of its top places is
below a positive link (i.e. there is no path starting from a top
place of y and stopping upwards at a bottom place of an
other +link).

◮ a top switching is a switching where we get rid of any
non-top jump (a jump is top when starts from a top +link);

CC02 : a TS is a transactional net, iff any proper loop of any top
switching contains at least a singularity.

◮ (CC01) ⇔ (CC02)



Example (3): a TN
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Example (3): top +links (in red)
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Example (3): a top switching with a singularity free loop
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Construction of TN: transaction steps

assume the top border of a TN is not empty

◮ a positive/negative expansion step consists into adding a
positive/negative link at the top of TN built so far.

◮ the construction proceeds bottom-up and it is driven by
”available“ top places of links of the TN;

◮ an expansion step is called transaction if it preserves the
property of being a TN (TS + correctness).



negative transaction

assume a TN R and a negative link x whose bottom place matches a
positive top border place t of R , then we can expand R by glueing x with
R at t (we write x ∗ R).

v1

lm>nl1

vm

· · ·

· · ·

1 =
∑m

i=1 vi

⋆

v

· · · · · ·

@

p1, ..., pn≥0

x

y

R

7→

lm>nl1
· · ·

· · ·
⋆

v

· · · · · ·

@

p1, ..., pn≥0

x

y

v =
∑m

i=1 vi .v

v1.v vm.v

R ′

A negative expansion (-transaction) step preserves correctness of a TN.

We can perform concurrently clusters of negative transactions.



positive transaction
assume a TN R and a positive link y s.t. each bottom place matches a
different top (possibly border) place t of a negative link x of R , then we
expand R by glueing x with R at t (we write x ∗ R = R ′).
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Proposition: A positive y -expansion is correct (a +transaction) if :

1. R ′ is a TS:

2. for each top switching S for R ′ containing y+ there is no
singularity-free trip starting downwards at some x ∈ N and stopping
upwards at some z ∈ N , where N is the set of negative links at the
top places (including @) of which y is connected (also by jumps).

then, y ∗ R ′ is a TN.



positive transaction
assume a TN R and a positive link y s.t. each bottom place matches a
different top (possibly border) place t of a negative link x of R , then we
expand R by glueing x with R at t (we write x ∗ R = R ′).
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singularity-free
loop

R ′

Proposition: A positive y -expansion is correct (a +transaction) if :

1. R ′ is a TS:

2. for each top switching S for R ′ containing y+ there is no
singularity-free trip starting downwards at some x ∈ N and stopping
upwards at some z ∈ N , where N is the set of negative links at the
top places (including @) of which y is connected (also by jumps).

then, y ∗ R ′ is a TN.



positive ACID transactions

◮ checking the expanded R ′ is a TS can be performed almost locally;

◮ checking correctness (singularity-free trips) is a task which may
involve visiting (reading/writing) a large portion of R ′.

Since the TN construction is performed collaboratively and
concurrently by a cluster of positive (resp. negative) agent/links, for
true concurrency we need to:

1. restrict the travelling region (reducing possible conflicts among
agents);

2. protect (lock) the gathered information against attempts of
other concurrent +agents;

3. increment/update, in case of success, the locked information
for transition (a good bound for this task is necessary).

Point 1-3 correspond to the isolation property of ACID
transactions.



positive ACID transactions and weights
Assume a TN R and (at least) two positive agents/links, x and y , that
try concurrently to expand R . Then

◮ v(y).v ′(z) = 0, then the two (possible) corresponding transactions:
– do not need to be isolated (if they do not share bottom places);
– do need to be isolated (and eventually performed) as a pair of
transactions.

· · ·

vy

· · ·

· · ·

v ′ z

· · ·

concurrent expansions

· · ·

· · ·

· · ·

· · ·

· · ·
singularity-free

S

S ′

singularity-free loop

loop

x2

x1

x3

x4

R ′



positive ACID transactions and weights

Assume a TN R and (at least) two positive agents/links, x and y , that
try concurrently to expand R . Then

◮ v(y).v ′(z) 6= 0, then they may interact, so they need to be isolated:

· · ·

vy

· · ·

· · ·

v ′ z

· · ·

concurrent expansions

· · ·
x2

x1

x3

x4

· · ·

· · ·

· · ·

· · ·

loop

a singularity-free
S

R ′



ACID transaction: expansion under domination

◮ assume x , y negative links in a top switching S for R ; a root of S is
any (positive) link of S that has no link below it. Then:

x ≤ y (x dominates y) if any singularity-free trip starting at a root
and stopping upwards at y visits x upwards.

◮ Proposition: the relation ≤ on negative links of S is a forest

order; it is reflexive, antisymmetric, transitive and it satisfies the
following property on negative links:

∀x , y , z if (x ≤ z ∧ y ≤ z) then (x ≤ y ∨ y ≤ x).

◮
∧

(N) (the joint dominator of N) is the greatest lower bound

(g.l.b., when it exists), by ≤, of a set of negative links N .

◮ if the set of the predecessor by < of a negative link x is not empty,
then it has a greatest element by ≤ called the immediate

dominator, δ(x), of a negative link x .



Example (4): immediate and joint dominator for N = {x , y , z}

x y

δ(y)
immediate dominator of y

immediate dominator of x and z

δ(x) = δ(z)

∧
{x , y , z}

joint dominator of {x , y , z}

z

S

N = {x , y , z}



the isolation property

◮ Theorem (lower bound): x , y two negative links and α a
singularity-free trip of a top switching S for R starting downwards at
x and stopping upwards at y ; then, any negative link z visited by α
is strictly dominated by the joint dominator

∧
{x , y} (if defined):

∀z− ∈ |α|,
∧

{x , y} < z.

◮ only certain -links must be isolated (locked); the other ones are
available for other possible transactions.



Example (5): isolation property

x y

S

candidate +expansion

N = {x , y}



Example (5): isolation property

x y

S

candidate +expansion

δ(y)

isolated points

free points

N = {x , y}

∧
{x , y}

δ(x)



other (under investigation) questions

1. additional information should be enable to restrict the region
to be explored for detecting singularity-free trips; a better (an
upper, not only a lower-)bound to the region we
explore/isolate during an expansion attempt.

2. immediate dominators (of negative links in a top switching), if
exist, are enough for computing joint dominator (the isolation
lower-bound); this information should be updated in case of
successfull transaction.



looking for an upperbound for the isolation

can we better restrict the region to be explored during
+transaction?

conjecture (upper-bound) : x , y two negative links and α a
singularity-free trip of a top switching S for R starting downwards
at x and stopping upwards at y ; then, any negative link z visited
by α is strictly dominated by the joint dominator

∧
{x , y} (if

defined):

∀z− ∈ |α|,
∧

{x , y} < z < x , y

- -

+

-

+

-
x y

z

+

expansion

x ≤ z



updating the immediate dominator

S

δ(y)

isolated points

free points

candidate +expansion

y

x

δ(x)

∧
{x , y}

z

δ(z)

N = {x , y , z}



updating the immediate dominator

isolated points

free points

y

x

δ(x)

z

N = {x , y , z}

after a correct +expansion

updating the immediate dominator

δ(y)

δ(z)

∧
{x , y , z}

S ′(R ′)

δ′(z)



updating the immediate dominator

Assume R ′ is obtained after a positive transaction performed on a
set of negative links N of R , then:

◮ either δ(x) ≤′ x and δ′(x) = δ(x)

◮ or δ(x) 6≤′ x and
∧

(N) ≤ δ′(x) < δ(x)

where δ′ and ≤′ are taken w.r.t. R ′.



other under investigation questions

a better understanding of the additive behaviour of ”pairwise“
depending transactions.


